Pathological Features of Ruptured Coronary Plaque and Thrombus Interfaces: Fibrin and von Willebrand Factor as Platelet Scaffolds on Rupture Sites

Author:

Yamashita Atsushi1,Nishihira Kensaku12,Gi Toshihiro1,Maekawa Kazunari1,Hatakeyama Kinta34,Horiuchi Saki1,Wada Kei5,Shibata Yoshisato2,Asada Yujiro1

Affiliation:

1. Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan

2. Department of Cardiology, Miyazaki Medical Association Hospital, Miyazaki, Japan

3. Department of Diagnostic Pathology, Nara Medical University, Kashihara, Japan

4. Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan

5. Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan

Abstract

AbstractArterial thrombus formation is thought to be initiated by platelet adhesion to the subendothelial matrix, but ruptured atherosclerotic plaques are characterized by substantial reduction of matrix proteins compared with stable plaques. Intraplaque erythrocytes and/or fibrin have been reported in high-risk coronary plaques. The aims of the current study were to identify factors that provide scaffolds for platelets at the sites of ruptured coronary plaques and investigate depositions of iron and bilirubin as hemoglobin catabolites in the ruptured plaques. Histological characteristics of plaque components and the thrombus interface were examined in 73 acute coronary aspirated thrombi. Necrotic debris (95%), macrophages (95%), and cholesterin clefts (81%) were observed frequently at the ruptured plaque and thrombus interface. A fibrous matrix (47%), calcification (32%), and extracellular deoxyribonucleic acid (15%) were identified as small foci. Tissue factor was localized in the necrotic core and macrophages. Fibrin and von Willebrand factor were consistently deposited within the plaques and beneath platelet aggregations. The citrullinated histone H3-immunopositive area accounted for only 0.5% of the plaque area. Bilirubin and iron depositions were detected in approximately 20% of the plaques in addition to biliverdin reductase and ferritin expression in macrophages. Fibrin and von Willebrand factor rather than matrix proteins and neutrophil extracellular traps may be major adhesive molecules at the sites of ruptured plaques. Iron and bilirubin deposits may be markers for rupture-prone plaques.

Funder

Japan Society for the Promotion of Science, and the Cooperative Research Project Program of the Joint Usage/Research Center at the Institute of Development, Aging and Cancer, Tohoku University

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Reference21 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3