Affiliation:
1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
Abstract
AbstractThe highly efficient synthesis of all-carbon tetrasubstituted olefins has been a challenge for decades, especially of multi-aryl-substituted olefins which are widely used in functional organic materials and pharmaceuticals. This work presents a carbonyl-directed palladium-catalyzed consecutive arylation of terminal alkenes with aryl iodides under mild conditions, in which a series of triarylated tetrasubstituted olefins were obtained in moderate yields. Because a weak chelation effect is generally difficult to support such a thorough trifold Heck arylation, and β-trans-selective alkenyl C–H activation cannot be achieved via a twisted endo-metallocyclic intermediate, the key to success is the compatibility between several mechanisms, including Heck reaction, C–H activation and E/Z-isomerization. Here, the judicious selection of a flexible-alkyl-chain-tethered carbonyl group seems to be critical, as it provides a proper chelation effect that not only assists distal alkenyl functionalization or isomerization, but also avoids byproducts caused by other possible β-H elimination or migration. The strategy developed herein greatly streamlines the preparation of the target molecules, and the protocol covers a range of readily available terminal alkenes bearing a native directing group (i.e., aldehyde, ketone and ester) and aryl iodides.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China