Remote-Carbonyl-Directed Consecutive Arylation of Terminal Alkenes for the Synthesis of Tetrasubstituted Olefins

Author:

Du YuORCID,Su Weiping,Li Kun,Luan Runze1

Affiliation:

1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

Abstract

AbstractThe highly efficient synthesis of all-carbon tetrasubstituted olefins has been a challenge for decades, especially of multi-aryl-substituted olefins which are widely used in functional organic materials and pharmaceuticals. This work presents a carbonyl-directed palladium-catalyzed consecutive arylation of terminal alkenes with aryl iodides under mild conditions, in which a series of triarylated tetrasubstituted olefins were obtained in moderate yields. Because a weak chelation effect is generally difficult to support such a thorough trifold Heck arylation, and β-trans-selective alkenyl C–H activation cannot be achieved via a twisted endo-metallocyclic intermediate, the key to success is the compatibility between several mechanisms, including Heck reaction, C–H activation and E/Z-isomerization. Here, the judicious selection of a flexible-alkyl-chain-tethered carbonyl group seems to be critical, as it provides a proper chelation effect that not only assists distal alkenyl functionalization or isomerization, but also avoids byproducts caused by other possible β-H elimination or migration. The strategy developed herein greatly streamlines the preparation of the target molecules, and the protocol covers a range of readily available terminal alkenes bearing a native directing group (i.e., aldehyde, ketone and ester) and aryl iodides.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3