Pulling Outward but Reacting Inward: Mechanically Induced Symmetry-Allowed Reactions of cis- and trans-Diester-Substituted Dichlorocyclopropanes

Author:

Craig Stephen L.ORCID,Wang ZiORCID,Kouznetsova Tatiana B.

Abstract

AbstractThe mechanically induced symmetry-allowed disrotatory ring openings of cis- and trans-gem-dichlorocyclopropane (gDCC) diesters are demonstrated through sonication and single-molecule force spectroscopy (SMFS) studies. In contrast to the previously reported symmetry-forbidden conrotatory ring opening of alkyl-tethered trans-gDCC, we show that the diester-tethered trans-gDCC primarily undergoes a symmetry-allowed disrotatory pathway even at the high forces (>2 nN) and short-time scales (ms or less) of sonication and SMFS experiments. The quantitative force-rate data obtained from SMFS data is consistent with computational models of transition-state geometry for the symmetry-allowed process, and activation lengths of 1.41 ± 0.02 Å and 1.08 ± 0.03 Å are inferred for the cis-gDCC diester and trans-gDCC diester, respectively. The strong mechanochemical coupling in the trans-gDCC is notable, given that the directionality of the applied force may appear initially to oppose the disrotatory motion associated with the reaction. The stereochemical perturbations of mechanical coupling created by the ester attachments reinforce the complexity that is possible in covalent polymer mechanochemistry and illustrate the breadth of reactivity outcomes that are available through judicious mechanophore design.

Funder

National Science Foundation

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3