Effects of Flat and Uphill Cycling on the Power-duration Relationship

Author:

Hovorka Matthias1ORCID,Leo Peter12,Simon Dieter1,Prinz Bernhard1,Nimmerichter Alfred1

Affiliation:

1. Training and Sports Sciences, University of Applied Sciences Wiener Neustadt for Business and Engineering, Wiener Neustadt, Austria

2. Department of Sports Sciences, University of Innsbruck, Innsbruck, Austria

Abstract

AbstractThe purpose of this study was to investigate the effects of flat and uphill cycling on critical power and the work available above critical power. Thirteen well-trained endurance athletes performed three prediction trials of 10-, 4- and 1-min in both flat (0.6%) and uphill (9.8%) cycling conditions on two separate days. Critical power and the work available above critical power were estimated using various mathematical models. The best individual fit was used for further statistical analyses. Paired t-tests and Bland-Altman plots with 95% limits of agreement were applied to compare power output and parameter estimates between cycling conditions. Power output during the 10- and 4-min prediction trial and power output at critical power were not significantly affected by test conditions (all at p>0.05), but the limits of agreement between flat and uphill cycling power output and critical power estimates are too large to consider both conditions as equivalent. However, power output during the 1-min prediction trial and the work available above critical power were significantly higher during uphill compared to flat cycling (p<0.05). The results of this investigation indicate that gradient affects cycling time-trial performance, power output at critical power, and the amount of work available above critical power.

Publisher

Georg Thieme Verlag KG

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3