Ultrasensitive Fluorogenic Substrates for Serine Proteases

Author:

Butenas Saulius1,DiLorenzo Maria E1,Mann Kenneth G1

Affiliation:

1. The Department of Biochemistry, Health Science Complex, University of Vermont, Burlington, VT, USA

Abstract

SummarySelective, sensitive assays for the quantitation of serine proteases involved in coagulation and fibrinolysis have been developed employing fluorogenic substrates containing a 6-amino-1-naphthalenesulfonamide leaving group (PNS-substrates). Over one hundred substrates were evaluated for hydrolysis by the serine proteases of blood coagulation and fibrinolysis, and substrate structure-efficiency correlations were examined. PNS-substrates which contain Lys in the P1 position are specific for Lys-plasmin and are either not hydrolyzed or hydrolyzed at a relatively low rate by factor Xa, thrombin, or urokinase-type plasminogen activator (uPA). These substrates allow quantitation of Lys-plasmin at concentrations as low as 1 pM. Eighteen of over 90 substrates tested for factor XIa are hydrolyzed by this enzyme at a relatively high rate reaching a kcat value of 170 s-1 and allowing quantitation of factor XIa at 10 fM. Eighteen of almost 90 PNS-substrates tested display high specificity for thrombin, some exceeding that for factor Xa by > 10,000-fold and > 100-fold for activated protein C (APC). Seven of these substrates have a over 100 s-1 and three of them have a KM below 1 μM. They allow the quantitation of thrombin at concentrations as low as 20 fM. For APC, uPA and the factor Vila/tissue factor complex, quantitation is feasible at 1 pM concentration. For factor Xa and factor VIIa the limits are 0.4 pM and 40 pM respectively. The PNS-substrates presented in this study may be employed for the development of direct and sensitive serine protease assays.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3