Polyethylene Wear in Retrieved Canine Acetabular Components

Author:

Tompkins D.,Bhushan B.,Olmstead M. L.,Dyce J.

Abstract

SummaryThe aim of this pilot study was to define the mechanism and mode of polyethylene wear in acetabular components retrieved from seven dogs following therapeutic total hip replacement. The articular surface of each acetabular component was examined using contact profilometry and scanning electron microscopy (SEM). Peak-tovalley distance (P-V) and arithmetic average surface roughness (Ra) were calculated for each quadrant of the surface. Deformation of the regular profile of the machining lines was the least severe form of surface alteration. Randomly orientated scratches, fine tapered filaments, ripples, and coarse surface shredding were common SEM observations. Gouging of the convex surface of the cup was seen in two cases following failure of the polyethylenecement interface. Wear of the nonarticular acetabular rim suggested neck impingement in one case. P-V and Ra were significantly lower in the craniodorsal zone, compared to the average roughness of the other three quadrants (p < 0.05). Abrasion, adhesion and fatigue were the principal mechanisms of polyethylene wear, and were implicated in the production of polyethylene particulate debris. Meticulous removal of abrasive third bodies at the time of surgery, and correct orientation of the acetabular component, should reduce early and severe wear.Polyethylene wear is inevitable following metal-on-polyethylene total hip replacement. In this study, the nature of polyethylene wear in retrieved canine acetabular components was defined, using contact profilometry and scanning electron microscopy. Abrasion, adhesion and fatigue were the principal mechanisms of wear, and were implicated in the production of polyethylene particulate debris.

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3