Biomechanical Responses of Neonatal Brachial Plexus to Mechanical Stretch

Author:

Singh Anita1,Shaji Shania1,Delivoria-Papadopoulos Maria2,Balasubramanian Sriram3

Affiliation:

1. School of Engineering, Widener University, Chester, Pennsylvania, United States

2. Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States

3. School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States

Abstract

AbstractThis study investigated the biomechanical responses of neonatal piglet brachial plexus (BP) segments—root/trunk, chord, and nerve at two different rates, 0.01 mm/second (quasistatic) and 10 mm/second (dynamic)—and compared their response to another peripheral nerve (tibial). Comparisons of mechanical responses at two different rates reported a significantly higher maximum load, maximum stress, and Young's modulus (E) values when subjected to dynamic rate. Among various BP segments, maximum stress was significantly higher in the nerve segments, followed by chord and then the root/trunk segments except no differences between chord and root/trunk segments at quasistatic rate. E values exhibited similar behavior except no differences between the chord and root/trunk segments at both rates and no differences between chord and nerve segments at quasistatic rate. No differences were observed in the strain values. When compared with the tibial nerve, only mechanical properties of BP nerves were similar to the tibial nerve. Mechanical stresses and E values reported in BP root/trunk and chord segments were significantly lower than tibial nerve at both rates. When comparing the failure pattern, at quasistatic rate, necking was observed at maximum load, before a complete rupture occurred. At dynamic rate, partial rupture at maximum load, followed by a full rupture, was observed. Occurrence of the rate-dependent failure phenomenon was highest in the root/trunk segments followed by chord and nerve segments. Differences in the maximum stress, E values, and failure pattern of BP segments confirm variability in their anatomical structure and warrant future histological studies to better understand their stretch responses.

Publisher

Georg Thieme Verlag KG

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3