Abstract
Several methods have been developed to label antibodies with 99mTc. Direct labeling results in 99mTc binding to multiple sites of various affinities that are often weaker than the binding to strong chelating agents. Attempts to overcome this disadvantage involve conjugation of strong chelating agents to the antibodies. While stability is usually enhanced, this approach suffers from alteration of antibody properties as well as non-specific binding of 99mTc to the antibody instead of to the conjugated chelating agent. This has been of concern for studies with DTPA as the chelating agent. In this study the loss of 99mTc by N2S2 challenge shows that a fraction of the 99mTc is nonspecifically bound to the antibody. An advantage of the approach of labeling antibodies containing a bifunctional chelating agent is the simplicity of the labeling procedure and the apparent high yields that in reality are the sum of chelating agent and non-specifically bound radioactivity. The last approach described in our work of conjugation of a preformed chelate has advantages of characterizable 99mTc complex chemistry and conjugation by standard protein derivatiza- tion chemistry. Slow chelation kinetics can be overcome in the small molecule stage and then conjugation performed under mild conditions with respect to the antibody or fragments. This approach, however, suffers from greater complexity of the labeling process including multiple steps, purifications and non-quantitative yields. The use of ligands for 99mTc in which the complexes are of high stability and predictable chemistry is likely to result in eventual optima labeling technologies. Processes which are non-specific may work in some cases, but are likely to present difficulties in optimization and general applicability from antibody to antibody.
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献