Production of Platelet-Activating Factor by Porcine Brain Microvascular Endothelial Cells in Culture

Author:

Satoh Kei1,Yoshida Hidemi1,Imalzumi Tada-Atsu1,Koyama Masayuki1,Takamatsu Shigeru1

Affiliation:

1. The Department of Pathological Physiology, Institute of Neurological Diseases, Hirosaki University School of Medicine, Hirosaki, Japan

Abstract

SummaryEndothelial cells produce platelet-activating factor (PAF), which is the key process in the interactions between the vascular wall and blood cells. To examine the production of PAF in brain microvasculature we have cultured brain endothelial cells and performed a comparative study with aortic endothelial cells. Fresh porcine brain was homogenized, and microvascular endothelial cells were separated by enzyme digestion. The cells were cultured in medium containing epidermal growth factor and bovine brain extract. Endothelial cells from the aorta of the same animal were cultured in a similar manner. Production of PAF was assessed by ǀ3Hǀacetate incorporation into phospholipids or by radioimmunoassay. Prostacyclin was measured by radioimmunoassay of 6-ketoprostaglandin F1α. The cells produced 1760 ± 403 and 2892 ± 347 dpm/106 cells (n = 4) of PAF when stimulated with brady- kinin and calcium ionophore A23187, each at 1 μM, respectively. Aortic endothelial cells produced 3911 ± 2006 and 8052 ± 2270 dpm/106 cells (n = 4), respectively, and these values were significantly higher than those in brain endothelial cells (p<0.01, U-test). Prostacyclin production was also higher in aortic cells as compared to brain microvascular endothelial cells. In aortic endothelial cells both Ca ionophore A23187 and bradykinin significantly stimulated PMN adherence whereas in brain microvascular cells only Ca ionophore enhanced the adherence. Brain microvascular endothelial cells produce smaller amount of PAF and prostacyclin as compared to aortic endothelial cells, and this fact may imply that the functional integrity of the brain microvascular endothelium is maintained at a low level.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3