Thrombin Stimulates Expression of Tissue-Type Plasminogen Activator and Plasminogen Activator lnhibitor Type 1 in Cultured Human Vascular Smooth Muscle Cells

Author:

Wojta Johann12,Gallicchio Marisa1,Zoellner Hans3,Hufnagl Peter2,Last Karena3,Filonzi Enrico L3,Binder Bernd R2,Hamilton John A3,McGrath Katherine1

Affiliation:

1. The Dept. Diagnostic Haematology, Royal Melbourne Hospital, Parkville, Victoria, Australia

2. The Dept. Medical Physiology, Laboratory for Clinical and Experimental Physiology, University of Vienna, Austria

3. The Dept. Medicine, University of Melbourne, Parkville, Victoria, Australia

Abstract

SummaryThe effect of thrombin on the fibrinolytic potential of human vascular smooth muscle cells (SMC) in culture was studied. SMC of different origin responded to thrombin treatment with a dose and time dependent increase in tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor type-1 (PAI-1) levels in both cell lysates and conditioned media with maximum effects achieved at 10-20 IU/ml thrombin. PAI-1 antigen levels also increased in the extracellular matrix of thrombin treated SMC. PAI-2 levels in cell lysates of such SMC were not affected by thrombin. The effect was restricted to active thrombin, since DFP-thrombin and thrombin treated with hirudin showed no increasing effect on t-PA and PAI-1 levels in SMC.Enzymatically active thrombin also caused a four-fold increase in specific PAI-1 mRNA and a three-fold increase in t-PA mRNA.Furthermore we demonstrated the presence of high and low affinity binding sites for thrombin on the surface of SMC with a K D = 4.3 × 10−10 M and 9.0 × 104 sites per cell and a KD = 0.6 × 10−8 M and 5.8 × 105 sites per cell respectively.Thrombin could come in contact with SMC in case of vascular injury or following gap formation between endothelial cells. Our data support the idea that besides its known proliferative effect for SMC, thrombin could also modulate their fibrinolytic system.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3