Elevated Levels of Apelin-36 in Heart Failure Due to Chronic Systemic Hypoxia

Author:

Ferdinal Frans1,Limanan David1,Rini Retno Dwi2,Alexsandro Rio1,Helmi Rizal1

Affiliation:

1. Department of Biochemisty and Molecular Biology, School of Medicine, Tarumanagara University, Jakarta, Indonesia

2. Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Indonesia, Jakarta Pusat, Indonesia

Abstract

AbstractApelin is a novel adipokine identified as an endogenous ligand of the specific orphan receptor APJ. Among the various isoforms of apelin, an increase in the apelin-36 plasma level has been associated with oxidative stress, and this isoform has various biological effects, such as positive inotropic, vasodilatory, and antiatherosclerotic effects. Therefore, apelin-36 may be used as a biomarker of heart failure (HF). Advances in the understanding of the molecular mechanisms underlying HF cannot be achieved without the use of animal models. However, it is unclear whether chronic systemic hypoxia can cause HF in rats. The present study aimed to determine whether chronic systemic hypoxia can cause HF in rats and whether apelin-36 can be used as a biomarker of HF. The study included Sprague–Dawley rats. The rats were randomly divided into seven groups (n = 4). One of the groups was a control group, and the six other groups were exposed to hypoxia (8% O2) for different durations (6 hours, 1 day, 3 days, 5 days, 7 days, and 14 days). The exposure groups showed ventricular hypertrophy accompanied by myocardial structural damage, which indicated ventricular remodeling. In addition, the exposure groups showed elevated apelin-36 plasma levels and signs of oxidative stress. Moreover, gel electrophoresis of heart tissue showed five bands that corresponded to apelin isotypes, including apelin-36. In an experimental rat HF model with chronic systemic hypoxia, apelin-36 was elevated along with oxidative stress. Apelin-36 along with oxidative stress may serve as a biomarker of HF in this model.

Publisher

Georg Thieme Verlag KG

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3