Soluble Fibrin Complexes: Separation as a Function of pH and Characterization

Author:

Benabid Y,Concord E,Suscillon M

Abstract

Summary1. The influence of the pH on the separation of high molecular weight derivatives obtained by a limited action of thrombin on fibrinogen was studied by agarose gel chromatography. When the pH of the elution buffer was 8.5, non crosslinked associations were easily separated in two peaks eluted prior to the fibrinogen peak: one contained a dimer, the other several high polymers. At pH 6.5, only the fibrinogen peak appeared: the fibrinogen molecule proteolysed by thrombin formed no stable associations at this pH and was eluted with the intact fibrinogen molecule. In the presence of factor XIII and Ca++, numerous associations were obtained which are independant of the pH.2. The polypeptide chain composition of the different species separated at pH 8.5 was studied by SDS-polyacrylamide gel electrophoresis. This technic showed Aα, Bβ and γ chains in the fibrinogen peak, whereas in the chromatographic fractions containing the dimer four bands corresponding to Aα, α, Bβ and γ chains were found. In the peak containing the high polymers, only the presence of α, Bβ and γ chains was demonstrated.3. These experimental results concerning the effect of pH on the formation of soluble complexes showed that the presence of fibrin monomers in fibrinogen solution was not sufficient to promote any associations. The formation of such derivatives is strongly dependent on the pH of the solution. This obviously can be explained by an influence of the pH either on the ionization of polymerisation sites and the intermolecular bonds between the complex units or on the unmasking of the polymerisation sites by a hypothetical pH induced conformational change of the fibrinogen molecule.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3