A Generic Concept for Large-scale Microarray Analysis Dedicated to Medical Diagnostics

Author:

Weninger F.,Merk S.,Kohlmann A.,Haferlach T.,Dugas M.

Abstract

Summary Background: The development of diagnostic procedures based on microarray analysis confronts the bioinformatician and the biomedical researcher with a variety of challenges. Microarrays generate a huge amount of data. There are many, not yet clearly defined, data processing steps and many clinical response variables which may not match gene expression patterns. Objectives: To design a generic concept for large-scale microarray experiments dedicated to medical diagnostics; to create a system capable of handling several 1000 microarrays per analysis and more than 100 clinical response variables; to design a standardized workflow for quality control, data calibration, identification of differentially expressed genes and estimation of classification accuracy; and to provide a user-friendly interface for clinical researchers with respect to biomedical interpretation. Methods: We designed a database structure suitable for the storage of microarray data and analysis results. We applied statistical procedures to identify differential genes and developed a technique to estimate classification accuracy of gene patterns with confidence intervals. Results: We implemented a Gene Analysis Management System (GAMS) based on this concept, using MySQL for data storage, R/Bioconductor for analysis and PHP for a web-based front-end for the exploration of microarray data and analysis results. This system was utilized with large data sets from several medical disciplines, mainly from oncology (~ 2000 micro-arrays). Conclusions: A systematic approach is necessary for the analysis of microarray experiments in a medical diagnostics setting to get comprehensible results. Due to the complexity of the analysis, data processing (by bioinformaticians) and interactive exploration of results (by biomedical experts) should be separated.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3