Long-range Correlated Glucose Fluctuations in Diabetes

Author:

Ogata H.,Tokuyama K.,Nagasaka S.,Ando A.,Kusaka I.,Sato N.,Goto A.,Ishibashi S.,Kiyono K.,Struzik Z.,Yamamoto Y.

Abstract

Summary Objectives : Our objective is to investigate diabetes- related alteration of glucose control in diurnal fluctuations in normal daily life by detrended fluctuation analysis (DFA). Methods : The fluctuations of glucose of 12 non-diabetic subjects and 15 diabetic patients were measured using a continuous glucose monitoring system (CGMS) over a period of one day. The glucose data was calculated by the DFA method, which is capable of revealing the presence of long-range correlations in time series with inherent non-stationarity. Results : Compared with the non-diabetic subjects, the mean glucose level and the standard deviation are significantly higher in the diabetic group.The DFA exponent α is calculated, and glucose time series are searched for the presence of negatively (0.5 < α <1.5) or positively (1.5 < α) correlated fluctuations. A crossover phenomenon, i.e. a change in the level of correlations, is observed in the non-diabetic subjects at about two hours; the net effects of glucose flux/reflux causing temporal changes in glucose concentration are negatively correlated in a “long-range" (> two hours) regime. However, for diabetic patients, the DFA exponent α = 1.65 ± 0.30, and in the same regime positively correlated fluctuations are observed, suggesting that the net effects of the flux and reflux persist for many hours. Conclusions : Such long-range positive correlation in glucose homeostasis may reflect pathogenic mechanisms of diabetes, i.e., the lack of the tight control in blood glucose regulation. Using modern time series analysis methods such as DFA, continuous evaluation of glucose dynamics could promote better diagnoses and prognoses of diabetes and a better understanding of the fundamental mechanism of glucose dysregulation in diabetes.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3