Biomechanical Comparison of the Temporalis Muscle Fascia, the Fascia Lata, and the Dura Mater

Author:

Pukšec Mirjana1,Semenski Damir2,Ježek Damir3,Brnčić Mladen3,Karlović Sven3,Jakovčević Antonia4,Bosanac Goran3,Jurlina Martin5

Affiliation:

1. Department of Otorhinolaryngology, Vukovar General Hospital, Vukovar, Croatia

2. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia

3. Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia

4. Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia

5. Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Center Zagreb, Zagreb, Croatia

Abstract

AbstractThe purpose of our research is to prove that elastic biomechanical characteristics of the temporalis muscle fascia are comparable to those of the fascia lata, which makes the temporalis muscle fascia adequate material for dural reconstruction in the region of the anterior cranial fossa. Fifteen fresh human cadavers, with age range from 33 to 83 years (median age: 64 years; mean age: 64.28 years), were included in the biomechanical study. Biomechanical stretching test with the comparison of elasticity among the tissues of the temporalis muscle fascia, the fascia lata, and the dura was performed. The samples were stretched up to the value of 6% of the total sample length and subsequently were further stretched to the maximum value of force. The value of extension at its elastic limit for the each sample was extrapolated from the force–extension curve and was 6.3% of the total sample length for the fascia lata (stress value of 14.61 MPa), 7.4% for the dura (stress value of 6.91 MPa), and 8% for the temporalis muscle fascia (stress value of 2.09 MPa). The dura and temporalis muscle fascia shared the same biomechanical behavior pattern up to the value of their elastic limit, just opposite to that of the fascia lata, which proved to be the stiffest among the three investigated tissues. There was a statistically significant difference in the extension of the samples at the value of the elastic limit for the fascia lata in comparison to the temporalis muscle fascia and the dura (p = 0.002; Kruskal–Wallis test). Beyond the value of elastic limit, the temporalis muscle fascia proved to be by far the most elastic tissue in comparison to the fascia lata and the dura. The value of extension at its maximum value of force for the each sample was extrapolated from the force–extension curve and was 9.9% of the sample's total length for the dura (stress value of 10.02 MPa), 11.2% for the fascia lata (stress value of 23.03 MPa), and 18.5% (stress value of 3.88 MPa) for the temporalis muscle fascia. There was a statistically significant difference in stress values at the maximum value of force between the dura and the temporalis muscle fascia (p = 0.001; Mann–Whitney U test) and between the dura and the fascia lata (p < 0.001; Mann–Whitney U test). Because of its elasticity and similarity in its mechanical behavior to the dura, the temporalis muscle fascia can be considered the most suitable tissue for dural reconstruction.

Publisher

Georg Thieme Verlag KG

Subject

Neurology (clinical)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3