Stimulated Glanzmann’s Thrombasthenia Platelets Produce Microvesicles

Author:

Holme Pål André1,Solum Nils Olav1,Brosstad Frank1,Egberg Nils2,Lindahl Tomas L3

Affiliation:

1. The Research Institute for Internal Medicine, Rikshospitalet, University of Oslo, Norway

2. The Dept. of Clinical Chemistry, Karolinska Hospital, Stockholm, Sweden

3. The Dept. of Clinical Chemistry, University Hospital, Linköping, Sweden

Abstract

SummaryThe mechanism of formation of platelet-derived microvesicles remains controversial.The aim of the present work was to study the formation of microvesicles in view of a possible involvement of the GPIIb-IIIa complex, and of exposure of negatively charged phospholipids as procoagulant material on the platelet surface. This was studied in blood from three Glanzmann’s thrombasthenia patients lacking GPIIb-IIIa and healthy blood donors. MAb FN52 against CD9 which activates the complement system and produces microvesicles due to a membrane permeabilization, ADP (9.37 μM), and the thrombin receptor agonist peptide SFLLRN (100 μM) that activates platelets via G-proteins were used as inducers. In a series of experiments platelets were also preincubated with PGE1 (20 μM). The number of liberated microvesicles, as per cent of the total number of particles (including platelets), was measured using flow cytometry with FITC conjugated antibodies against GPIIIa or GPIb. Activation of GPIIb-IIIa was detected as binding of PAC-1, and exposure of aminophospholipids as binding of annexin V. With normal donors, activation of the complement system induced a reversible PAC-1 binding during shape change. A massive binding of annexin V was seen during shape change as an irreversible process, as well as formation of large numbers of microvesicles (60.6 ±2.7%) which continued after reversal of the PAC-1 binding. Preincubation with PGE1 did not prevent binding of annexin V, nor formation of microvesicles (49.5 ± 2.7%), but abolished shape change and PAC-1 binding after complement activation. Thrombasthenic platelets behaved like normal platelets after activation of complement except for lack of PAC-1 binding (also with regard to the effect of PGE1 and microvesicle formation). Stimulation of normal platelets with 100 μM SFLLRN gave 16.3 ± 1.2% microvesicles, and strong PAC-1 and annexin V binding. After preincubation with PGE1 neither PAC-1 nor annexin V binding, nor any significant amount of microvesicles could be detected. SFLLRN activation of the thrombasthenic platelets produced a small but significant number of microvesicles (6.4 ± 0.8%). Incubation of thrombasthenic platelets with SFLLRN after preincubation with PGE1, gave results identical to those of normal platelets. ADP activation of normal platelets gave PAC-1 binding, but no significant annexin V labelling, nor production of microvesicles. Thus, different inducers of the shedding of microvesicles seem to act by different mechanisms. For all inducers there was a strong correlation between the exposure of procoagulant surface and formation of microvesicles, suggesting that the mechanism of microvesicle formation is linked to the exposure of aminophospholipids. The results also show that the GPIIb-IIIa complex is not required for formation of microvesicles after activation of the complement system, but seems to be of importance, but not absolutely required, after stimulation with SFLLRN.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3