Von Willebrand Disease: A Database of Point Mutations, Insertions, and Deletions

Author:

Ginsburg David1,Sadler Evan J2

Affiliation:

1. The Howard Hughes Medical Institute, Departments of Internal Medicine and Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA

2. The Howard Hughes Medical Institute, The Jewish Hospital of St. Louis, Departments of Medicine and of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA

Abstract

SummaryThe current system for the diagnosis and classification of von Willebrand disease (vWD) is quite complex, with more than 20 distinct variants described. Over the past few years considerable progress has been made toward an understanding of vWD at the molecular level. A small cluster of mutations within the vWF A1 homologous repeat appears responsible for over 90% of type IIB vWD. A similar cluster of mutations in the vWF A2 homologous repeat accounts for the majority of type II A vWD. By RFLP analysis, several type II vWD mutations have been shown to be recurrent on distinct haplotype backgrounds, suggesting independent genetic origins (see accompanying manuscript for a complete list of known polymorphisms). Several mutations at the N-terminus of the mature vWF subunit have been identified in association with abnormal factor VIII binding. Homozygotes for this abnormal vWF present with a hemophilia-like phenotype that is autosomal recessive in inheritance. In a small subset of patients with type III vWD large gene deletions have been identified on one or both vWF alleles. Carriers heterozygous for a deleted locus and one normal vWF gene are generally asymptomatic. Nonsense mutations and other defects resulting in loss of vWF mRNA expression from one allele have also been associated with a recessive type III vWD phenotype. No distinct molecular defect responsible for classic type I vWD has yet been defined.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3