Quantitative Analysis of Surgical Working Space During Endoscopic Skull Base Surgery

Author:

Davies Joel C.1,Chan Harley H.L.1,Yao Christopher M.K.L.1,Cusimano Michael D.23,Irish Jonathan C1,Lee John M34

Affiliation:

1. Department of Otolaryngology–Head and Neck Surgery/Surgical Oncology, Princess Margaret Cancer Centre and Guided Therapeutics (GTx) Program, University of Toronto, Toronto, Ontario, Canada

2. Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada

3. Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada

4. Department of Otolaryngology–Head and Neck Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada

Abstract

Abstract Objectives Selective dissection of intranasal anatomy may improve visualization and maneuverability at the skull base. We aimed to quantify the dimensions of working space and angles achieved following sequential removal of intranasal structures using an endoscopic transphenoidal approach to the skull base. Methods Cone beam computed tomography scans of four cadaveric heads were obtained for registration of an optical tracking system. Each head was sequentially dissected: (1) sphenoidotomy and limited posterior septectomy, (2) unilateral partial middle turbinectomy, (3) bilateral partial middle turbinectomy, and (4) wide posterior septectomy. The maximal craniocaudal and mediolateral distance (mm) and angle (degrees) reached were calculated at the sphenoid face and sella. Data were analyzed using descriptive statistics and tests of statistical significance. The significance level was set at p  ≤  0.05. Results A significant improvement in both dimensions of working space was observed with each stage of dissection at the level of the sphenoid face. Maximal working space was achieved following bilateral middle turbinectomy and wide posterior septectomy with a 38 and 29% increase in working space in the mediolateral and craniocaudal dimensions, respectively. The largest stepwise increase in working space was observed with unilateral middle turbinectomy (mediolateral: 24 ± 3 mm and craniocaudal: 20 ± 3 mm). A trend toward improved degrees of visualization was observed with each stage of dissection but was not statistically significant. Conclusion Approaches to the skull base can be enhanced by selective unilateral/bilateral partial middle turbinectomy and posterior septectomy being performed to improve visualization and maximize surgical working freedom.

Publisher

Georg Thieme Verlag KG

Subject

Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3