A Graph-Grammar Approach to Represent Causal, Temporal and Other Contexts in an Oncological Patient Record

Author:

Thews O.,Rohrbach C.,Sergl M.,Pommerening K.,Müller R.

Abstract

AbstractThe data of a patient undergoing complex diagnostic and therapeutic procedures do not only form a simple chronology of events, but are closely related in many ways. Such data contexts include causal or temporal relationships, they express inconsistencies and revision processes, or describe patient-specific heuristics. The knowledge of data contexts supports the retrospective understanding of the medical decision-making process and is a valuable base for further treatment. Conventional data models usually neglect the problem of context knowledge, or simply use free text which is not processed by the program. In connection with the development of the knowledge-based system THEMPO (Therapy Management in Pediatric Oncology), which supports therapy and monitoring in pediatric oncology, a graph-grammar approach has been used to design and implement a graph-oriented patient model which allows the representation of non-trivial (causal, temporal, etc.) clinical contexts. For context acquisition a mouse-based tool has been developed allowing the physician to specify contexts in a comfortable graphical manner. Furthermore, the retrieval of contexts is realized with graphical tools as well.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Time Domain Electronic Medical Record Taxonomies in the Application of Machine Learning;Electronics;2023-01-21

2. Graph-Representation of Patient Data: a Systematic Literature Review;Journal of Medical Systems;2020-03-12

3. EDV in der Hämatologie und Onkologie;Kompendium Internistische Onkologie;2006

4. Efficiency and safety of chemotherapy plans for children: CATIPO—a nationwide approach;Artificial Intelligence in Medicine;2002-03

5. Requirements for Medical Modeling Languages;Journal of the American Medical Informatics Association;2001-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3