Term Domain Distribution Analysis: a Data Mining Tool for Text Databases

Author:

Chu W. W.,Parker D. S.,Goldman R. M.,Goldman J. A.

Abstract

AbstractIn this paper, we give a case history illustrating the real-world application of a useful technique for data mining of text databases. The technique, which we call Term Domain Distribution Analysis (TDDA), consists of keeping track of term frequencies for specific finite domains and announcing significant differences from standard frequency distributions over these domains as a hypothesis. TDDA is part of a larger framework, the Digital Filter Model, for data mining of text documents. In the case study presented, the domain of terms was the pair {right, left}, over which we expected a uniform distribution. In analyzing term frequencies in a thoracic lung cancer database, the TDDA technique led to the surprising discovery that primary thoracic lung cancer tumors appear in the right lung more often than the left lung, with a ratio of 3:2. Treating the text discovery as a hypothesis, we verified this relationship against the medical literature in which primary lung tumor sites were reported, using a standard χ2 statistic. We subsequently developed a working theoretical model of lung cancer that may explain the discovery. This discovery and our model may change how oncologists view the mechanisms of primary lung tumor location.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3