Distribution of the Force in the Knee Joint during Daily Activities after Open Wedge High Tibial Osteotomy: A Rationale for the Proper Postoperative Management

Author:

Seo Hansol1,Lim Dohyung1,Jang Young Woong2,Kang Kwan-su3,Lee Myung Chul4,Lee O-Sung5,Im Byeong-Eun6,Lee Yong Seuk6

Affiliation:

1. Department of Mechanical Engineering, Sejong University, Seoul, The Republic of Korea

2. Central Research and Development Center, Corentec Co. Ltd., Seoul, The Republic of Korea

3. Medical Device Development Center, OSONG Medical Innovation Foundation, Cheongju-si, The Republic of Korea

4. Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, The Republic of Korea

5. Department of Orthopaedic Surgery, Mediplex Sejong Hospital, Incheon, The Republic of Korea

6. Department of Orthopaedic Surgery, Seoul National University College of Medicine, Bundang Hospital, Seongnam, The Republic of Korea

Abstract

AbstractThe present study was conducted to evaluate the force distribution in knee joint during daily activities after open-wedge high tibial osteotomy (OWHTO). A three-dimensional proximal tibial finite element model (FEM) was created using Mimics software to evaluate computed tomography (CT) scans of the tibia after OWHTO. The anterior and posterior gaps were 7.0 and 12.1 mm, respectively, and the target opening angle was 12 degrees. The loading ratio of the medial and lateral tibial plateaus was 6:4. To evaluate force distribution in the knee joint during activities of daily living (ADLs) after OWHTO, peak von Mises stresses (PVMSs) were analyzed at the plate and posterolateral edge region of osteotomized tibia. ADLs associated with greater knee flexion (sitting 90 degrees, standing 90 degrees, bending 90 degrees, stepping up stairs 60 degrees, and stepping downstairs 30 and 60 degrees) yielded PVMSs ranging from 195.2 to 221.5 MPa at the posterolateral edge region. In particular, stepping downstairs with knee flexion to 60 degrees produced the highest PVMS (221.5 MPa), greater than the yield strength (100–200 MPa). The highest plate PVMS was greater than 300 MPa during ADLs associated with flexion angles of approximately 90 degrees. However, these values did not exceed the yield stress (760.0 MPa). Conclusively, higher force was generated during higher flexion associated with weight-bearing and stepping downstairs produced a high force (even at lower flexion) on the posterolateral area of the tibial plateau. Therefore, a caution should be exercised when engaging in knee flexion of approximately 90 degrees and stepping downstairs in the early postoperative period when patients follow a weight-bearing rehabilitation protocol. However, this study is based on modeling; further translational studies are needed prior to clinical application.

Funder

National Research Foundation of Korea

Publisher

Georg Thieme Verlag KG

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3