ADAMTS13 or Caplacizumab Reduces the Accumulation of Neutrophil Extracellular Traps and Thrombus in Whole Blood of COVID-19 Patients under Flow

Author:

Yada Noritaka1,Zhang Quan1,Bignotti Antonia1,Ye Zhan1,Zheng X. LongORCID

Affiliation:

1. Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States

Abstract

Background Neutrophil NETosis and neutrophil extracellular traps (NETs) play a critical role in pathogenesis of coronavirus disease 2019 (COVID-19)-associated thrombosis. However, the extents and reserve of NETosis, and potential of thrombus formation under shear in whole blood of patients with COVID-19 are not fully elucidated. Neither has the role of recombinant ADAMTS13 or caplacizumab on the accumulation of NETs and thrombus in COVID-19 patients' whole blood under shear been investigated. Methods Flow cytometry and microfluidic assay, as well as immunoassays, were employed for the study. Results We demonstrated that the percentage of H3Cit + MPO+ neutrophils, indicative of NETosis, was dramatically increased in patients with severe but not critical COVID-19 compared with that in asymptomatic or mild disease controls. Upon stimulation with poly [I:C], a double strain DNA mimicking viral infection, or bacterial shigatoxin-2, the percentage of H3Cit + MPO+ neutrophils was not significantly increased in the whole blood of severe and critical COVID-19 patients compared with that of asymptomatic controls, suggesting the reduction in NETosis reserve in these patients. Microfluidic assay demonstrated that the accumulation of NETs and thrombus was significantly enhanced in the whole blood of severe/critical COVID-19 patients compared with that of asymptomatic controls. Like DNase I, recombinant ADAMTS13 or caplacizumab dramatically reduced the NETs accumulation and thrombus formation under arterial shear. Conclusion Significantly increased neutrophil NETosis, reduced NETosis reserve, and enhanced thrombus formation under arterial shear may play a crucial role in the pathogenesis of COVID-19-associated coagulopathy. Recombinant ADAMTS13 or caplacizumab may be explored for the treatment of COVID-19-associated thrombosis.

Funder

U.S. Department of Health and Human Services

National Institutes of Health

National Heart, Lung, and Blood Institute

Publisher

Georg Thieme Verlag KG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3