Differential Expression of MicroRNAs and miR-206-Mediated Downregulation of BDNF Expression in the Rat Fetal Brain Following Maternal Hypothyroidism

Author:

Xing Qian123,Shan Zhongyan1,Gao Yun2,Mao Jingyuan2,Liu Xiu12,Yu Jiashu123,Sun Huakun12,Fan Chenling2,Wang Hong2,Zhang Hongmei2,Teng Weiping2

Affiliation:

1. Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China

2. Key Laboratory of Endocrine Diseases, Liaoning Province, Shenyang, China

3. Department of Endocrinology and Metabolism, First Affiliated Hospital of Dalian Medical University, Dalian, China

Abstract

AbstractTo investigate the mechanism responsible for the neurological alterations, miRNA expression profile and brain-derived neurotrophic factor (BDNF) were evaluated in brain tissues of fetal or neonatal rats and from maternal rats with hypothyroidism. Ninety female Wistar rats were divided into a control and a hypothyroid group, which were mated. Brain samples of the offspring were obtained at maternal embryonic day (E) E13 and E17 as well as postnatal day (P) P0 and P7, and the hippocampus and cortex were separated at P7. BDNF mRNA at E13 was tested by real-time PCR and protein expression by Western blot. Luciferase assays were used to confirm that miR-206 targets the 3′-untranslated region (3′-UTR) of BDNF. In the brain tissues of fetal and neonatal rats from maternal rats with hypothyroidism, differentiation miRNAs profile were found at E13, E17, P0, and P7. Compared with the control group, miR-206 levels in the hypothyroidism group were increased by 3.1-fold by micro-array, and were higher as measured by SYBR green real-time qRT–PCR (p<0.01). There was no significant difference in the BDNF mRNA levels at E13 between the hypothyroidism group and the control group (1.767±0.477 vs. 1.798±0.462, respectively; p>0.05), but pro-BDNF and mature BDNF protein levels in the hypothyroid group at E13 were significantly lower than those in the control group (p<0.05). miR-206 targeted 3′-UTR of BDNF. Our data highlight the role of miR-206 as a post-transcriptional inhibitor of BDNF at E13 in pregnant hypothyroid rats.

Publisher

Georg Thieme Verlag KG

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3