Comparative Study of the Effect of Macrolide Antibiotics Erythromycin, Clarithromycin, and Azithromycin on the ERG1 Gene Expression in H9c2 Cardiomyoblast Cells

Author:

Hajimirzaei Nima1,Khalili Nazila Pour2,Boroumand Behshad1,Safari Fatemeh3,Pourhosseini Armin1,Judi-Chelan Reza4,Tavakoli Fatemeh1

Affiliation:

1. Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

2. Center for Cell Pathology Research, Department of Biological Sciences, Khazar University, Baku, Azerbaijan

3. Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

4. Department of Maxillofacial surgery, Shahid Rahnemun Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

AbstractMacrolides are clinically well-established class of antibiotics. Macrolides induce cardiotoxicity by blocking ether-a-go-go–related gene (ERG) potassium channels in cardiac myocytes. The aim of this study was to compare the effects of erythromycin, clarithromycin and azithromycin on cell viability and expression of ERG1 gene in H9c2 cells. Cell viability and ERG1 gene expression of H9c2 cells in 3 different concentrations, 1, 10 and 25 µg/ml, after 48 and 72 h were determined by MTT test and Real time-PCR method respectively. After 48 h, the growth of H9c2 cells treated with erythromycin, clarithromycin and Azithromycin (except two doses) were inhibited significantly compared to control group (p<0.05). All three groups of antibiotics showed toxic effects on cells after 72 h in all concentrations. Azithromycin-inhibiting effects were significantly higher than two other groups after 72 h of treatment. The expression of ERG1 gene increased in all three groups of antibiotics by increasing the concentration and duration of treatment. Azithromycin had the most pronounced effect on ERG1 expression in 48 and 72 h. This study indicated that these macrolides affect ERG1 expression due to their potential cardiac adverse effects. Further investigations are required to understand the exact mechanism of cardiotoxicity associated with macrolides.

Publisher

Georg Thieme Verlag KG

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3