Further Studies on the Mechanism for the Antithrombotic Effects of Naroparcil, an Orally Active Thioxyloside Compound

Author:

Theveniau J.,Coup D.,Grégoire T.,Vaillot M.,Dupouy D.,Sié P.,Boneu B.,Millet J.,Masson P.

Abstract

SummaryThe antithrombotic β-D-xyloside, naroparcil, has previously been shown to induce a dose-related increase of circulating glycosaminoglycans (GAGs) together with an antithrombin activity (anti-IIa) via heparin cofactor II (HCII) in the rabbit. In order to go further in the mechanisms, the relationship between the antithrombotic activity, the HCII-mediated anti-IIa activity and the plasma GAG content was investigated. We showed that the in vitro specific activity on the inhibition of thrombin by HCII of the plasma GAG extract from naroparcil-treated rabbits was increased by a factor of 60 when compared to controls. In addition, the fractionation of the plasma GAG extract by affinity chromatography on immobilized HCII led to a more potent material whereas the low-affinity fraction was shown to be inactive in thrombin inhibition by HCII.The qualitative analysis of GAGs showed the presence of the ΔDi-4S DS disaccharide, undetectable in control, which accounted for 22% in the unfractionated GAG extract and for 60% in the high affinity fraction. In vitro experiments using immuno-depleted plasma in antithrombin III (ATIII), HCII or both, indicated that the anti-IIa activity of the plasma GAG extract from naroparcil-treated rabbits was mainly due to HCII potentialisation. The unfractionated GAG extract and the high affinity fraction were shown to be antithrombotic in a Wessler-based model in the rat, giving ED80 values of 610 UA/kg and 56 UA/kg respectively whereas the low-affinity fraction was devoid of any antithrombotic activity. These results show that the antithrombotic activity of naroparcil is dependent on modification in the plasma GAG profile which inactivates thrombin via the HCII.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3