Internal Audit of the Canadian Neonatal Network Data Collection System

Author:

Seidlitz Wendy1,Chan Priscilla2,Yeh Sonny2,Musrap Natasha2,Lee Shoo23,Shah Prakesh23,

Affiliation:

1. McMaster Children's Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada

2. Department of Paediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada

3. Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada

Abstract

Background Neonatal databases worldwide have become a prominent tool for benchmarking, evaluation of outcomes, and quality improvement initiatives. We aimed to assess the precision of the Canadian Neonatal Network (CNN) database by conducting an internal audit of data extraction. Methods An audit was conducted in all 31 neonatal units participating in the CNN. Ninety-five data items selected for reabstraction were classified into categories (critical, important, less important) based on predefined agreement rates. Five records were randomly selected at each site for reabstraction, including one short (3–7 days), two medium (8–12 days), and two long (18–22 days) stay cases. Agreement rates for each data item were calculated for individual units and across the network. Results A total of 155 cases and 14,725 data fields were reabstracted. The overall agreement rates for critical, important, and less important data items were 98.0, 96.1, and 96.3%, respectively. Individual site variation for discrepancies ranged between 0.2 and 12.8% for all collected data items. Conclusion Neonatal data extraction within the CNN database structure exhibited high precision; thereby, revealing the reliability of our data abstraction for neonatal demographic, processes of care, and outcomes information. An independent external audit of data extraction would be beneficial.

Publisher

Georg Thieme Verlag KG

Subject

Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3