Evaluating Surgical Delay Using Infrared Thermography in an Island Pedicled Perforator Flap Rat Model

Author:

Li Xiucun1,Chen Miao1,Maharjan Suraj1,Cui Jianli1,Lu Laijin1,Gong Xu1

Affiliation:

1. Department of Hand Surgery, The First Hospital of Jilin University, Chang Chun, Jilin Province, China

Abstract

Background The aim of this study was to examine the usefulness of infrared (IR) thermography in visualizing the dilation of the choke vessels in a delayed pedicled perforator flap rat model. Methods A three-territory island flap was designed and harvested on one side of the rat dorsum. The flap was divided into five regions. In the normal group (n = 8), IR thermal imaging was correlated with the postmortem arteriography for the location of angiosomes, linking patterns, perforator diameter, and temperature on each region. The delay group (n = 35) was divided into seven groups according to various delay periods. At different time intervals, the delay group was compared with the normal group according to link pattern and temperature on each region. Results IR thermal imaging showed that a white hotspot existed on the surface of each angiosome; the true anastomotic vessels manifested a continuous white band linking the white hotspots on angiosomes, whereas the choke vessels presented a red zone in between adjacent hotspots. After delay, the dilation of the choke vessels manifested itself as the replacement of the red zone between adjacent hotspots by the white band on IR thermography. In addition, the delayed flap presented a phenomenon of rise and fall in temperature over time. Conclusion IR thermography can accurately visualize the process of the dilation of choke vessels after a surgical delay. The chronological change in the IR thermal imaging combined with the temperature change in the delayed flap might be useful to determine the optimal delay period.

Publisher

Georg Thieme Verlag KG

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3