Biomechanics and Microstructural Analysis of the Mouse Knee and Ligaments

Author:

Carballo Camila12,Hutchinson Ian1,Album Zoe1,Mosca Michael1,Hall Arielle2,Rodeo Scott1,Ying Liang1,Deng Xiang-Hua1,Rodeo Scott1

Affiliation:

1. Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York

2. Programa de Pós-graduação em Anatomia Patológica, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil

Abstract

AbstractThe purpose of this study is to determine the feasibility of using murine models for translational study of knee ligament injury, repair, and reconstruction. To achieve this aim, we provide objective, quantitative data detailing the gross anatomy, biomechanical characteristics, and microscopic structure of knee ligaments of 44 male mice (C57BL6, 12 weeks of age). Biomechanical testing determined the load-to-failure force, stiffness, and the site of ligament failure for the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), and the medial and lateral collateral ligaments (MCL and LCL). These data are complemented by histological characterization of each of the knee ligaments. In addition, the osseous morphology of the mouse knee was examined using high-resolution nanofocus computed tomography (CT), while standard micro-CT was employed to measure bone morphometrics of the distal femur and proximal tibia. Collectively, our findings suggest that the gross anatomy of the mouse knee is similar to the human knee despite some minor differences and features unique to the murine knee. The ACL had the highest load to failure (5.60 ± 0.75 N), the MCL (3.33 ± 1.45 N), and the PCL (3.45 ± 0.84 N) were similar, and the LCL (1.44 ± 0.37 N) had the lowest load to failure and stiffness. Murine models provide a unique opportunity to focus on biological processes that impact ligament pathology and healing due to the availability of transgenic strains. Our data support their use as a translational platform for the in vivo study of ligament injury, repair, and reconstruction.

Publisher

Georg Thieme Verlag KG

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3