Towards Implementation of OMOP in a German University Hospital Consortium

Author:

Maier C.,Lang L.,Storf H.,Vormstein P.,Bieber R.,Bernarding J.,Herrmann T.,Haverkamp C.,Horki P.,Laufer J.,Berger F.,Höning G.,Fritsch H.W.,Schüttler J.,Ganslandt T.,Prokosch H.U.,Sedlmayr M.

Abstract

Background In 2015, the German Federal Ministry of Education and Research initiated a large data integration and data sharing research initiative to improve the reuse of data from patient care and translational research. The Observational Medical Outcomes Partnership (OMOP) common data model and the Observational Health Data Sciences and Informatics (OHDSI) tools could be used as a core element in this initiative for harmonizing the terminologies used as well as facilitating the federation of research analyses across institutions. Objective To realize an OMOP/OHDSI-based pilot implementation within a consortium of eight German university hospitals, evaluate the applicability to support data harmonization and sharing among them, and identify potential enhancement requirements. Methods The vocabularies and terminological mapping required for importing the fact data were prepared, and the process for importing the data from the source files was designed. For eight German university hospitals, a virtual machine preconfigured with the OMOP database and the OHDSI tools as well as the jobs to import the data and conduct the analysis was provided. Last, a federated/distributed query to test the approach was executed. Results While the mapping of ICD-10 German Modification succeeded with a rate of 98.8% of all terms for diagnoses, the procedures could not be mapped and hence an extension to the OMOP standard terminologies had to be made.Overall, the data of 3 million inpatients with approximately 26 million conditions, 21 million procedures, and 23 million observations have been imported.A federated query to identify a cohort of colorectal cancer patients was successfully executed and yielded 16,701 patient cases visualized in a Sunburst plot. Conclusion OMOP/OHDSI is a viable open source solution for data integration in a German research consortium. Once the terminology problems can be solved, researchers can build on an active community for further development.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3