Assessing the Structural Footprint of Minimally Invasive Brain Cannulation on Cerebral White Matter: A Cadaveric Model

Author:

Sivakanthan Sananthan1,Ochalski Pawel2,Schirda Claudiu3,Engh Johnathan4

Affiliation:

1. Department of Neurosurgery, University of South Florida, Tampa, Florida, United States

2. Department of Neurosurgery, Lancaster Neuroscience and Spine Associates, Lancaster, Pennsylvania, United States

3. Department of Radiology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, United States

4. Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States

Abstract

Background All brain surgery requires some degree of iatrogenic trauma to healthy tissue. Minimally invasive approaches to brain tumors offer the potential of decreasing this trauma compared with conventional approaches. However, there are no validated radiologic models to examine axonal damage after minimally invasive entry into the brain. Objective To present a cadaveric model of brain cannulation using fractional anisotropy measurements obtained from diffusion tensor magnetic resonance imaging (MRI). Two different methods of access are compared. Methods Freshly harvested unfixed cadaveric brains were cannulated using both direct and indirect (i.e., dilation followed by cannulation) methods. Specimens were subjected to 68-direction diffusion tensor imaging scans and proton-density imaging. Fractional anisotropy (FA) data from a region of interest surrounding the entry zone was extracted from scans using imaging software and analyzed. Results FA values were significantly higher following indirect cannulation (less invasive method) than they were following direct cannulation. FA values for undisturbed brain were significantly higher than in either of the cannulated groups, suggesting an inverse relationship between FA values and brain injury. Conclusion Axonal damage following brain cannulation can potentially be evaluated by FA analysis in a cadaveric model. These data may lead to an MRI-based model of iatrogenic brain injury following tumor surgery. Future studies will focus on histologic analysis and clinical validation in live tissues.

Publisher

Georg Thieme Verlag KG

Subject

Neurology (clinical),Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3