The Plasminogen (Fibrinolytic) System

Author:

Collen Désiré

Abstract

IntroductionThe plasminogen (fibrinolytic) system (Fig. 1) comprises an inactive proenzyme, plasminogen, that can be converted to the active enzyme, plasmin. Plasmin degrades fibrin and activates matrix metalloproteinases (MMPs) that, in turn, degrade the extracellular matrix (ECM).1-3 Two physiological plasminogen activators (PAs) have been identified: tissue-type PA (t-PA) and urokinase-type PA (u-PA), which binds to a cellular u-PA receptor (u-PAR). Inhibition of the plasminogen/MMP system occurs at the level of the PA, by specific PA inhibitors (PAIs), at the level of plasmin, primarily by α2-antiplasmin, or at the level of MMPs, by tissue inhibitors of MMPs (TIMPs).The dual roles of the plasminogen system are presently well established. The t-PA-mediated pathway is primarily involved in fibrin homeostasis, and the u-PA-mediated pathway is primarily involved in phenomena, such as cell migration and tissue remodeling. Consequently, the terminology “fibrinolytic system” has become inadequate and, therefore, will be replaced by “plasminogen system” in the present review.In 1980, the state of knowledge concerning the plasminogen system was summarized.4 At that time, most of the components of the system (except the PAIs) were identified and biochemically characterized (except t-PA), but thrombolytic therapy was still in its infancy. The pathophysiologic role of the plasminogen system was deduced indirectly from correlations between levels of its components and clinical disease states, whereas its role in vascular biology, matrix remodeling, tumor growth and dissemination, wound healing, and infection was largely unknown. The last 20 years have witnessed a rapidly progressing elucidation of the biochemistry, (patho)physiology, and therapeutic applications of the plasminogen system. This development has been catalyzed by the emergence of powerful molecular biological technologies, including recombinant DNA techniques for the expression of heterologous proteins and targeted gene manipulation in vivo for the elucidation of the (patho)physiological role of their translation products.The aim of the present review is to summarize the main developments in the plasminogen field since the 1980s. This account will be incomplete, since references to much significant work were omitted due to space limitations. To alleviate this shortcoming, reference is made primarily to review articles, in which more details and citations to original work can be found.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3