Shear Stress Induces Change in Extracellular Signal-Regulated Kinase 5 Levels with Sustained Activation under Disturbed and Continuous Laminar Flow

Author:

Shalaby S.1,Chitragari G.1,Sumpio B.1,Sumpio B.1

Affiliation:

1. Section of Vascular Surgery, Yale University, New Haven, Connecticut

Abstract

AbstractExtracellular signal-regulated kinase 5 (ERK5) has been reported to regulate endothelial integrity and protect from vascular dysfunction under laminar flow. Previously reported research indicates that under laminar flow ERK5 is activated with production of atheroprotective molecules. However, the characterization of ERK5 activation and levels under different flow patterns has not been investigated.Confluent HUVECs were serum-starved then seeded on glass slides. HUVECs incubated in 1% FBS were exposed to continuous laminar flow (CLF), to-and-fro flow (TFF), or pulsatile forward flow (PFF) in a parallel plate flow chamber. At the end of experimentation, cell lysates were immunoblotted with antibodies to phospho-ERK5 and total ERK5. ERK5 activation was assessed by the levels of phosphorylated ERK5. The densitometric mean ± SEM is calculated and analyzed by ANOVA. p < 0.05 is considered significant.Levels of ERK5 decreased with all flow conditions with the largest decrease in TFF flow condition. TFF and CLF exhibited sustained ERK5 phosphorylation in HUVECs stimulated for up to 4 hours. PFF had transient phosphorylation of ERK5 at 2 hours, which then became undetectable at 4 hours of exposure to flow. Also, TFF and CLF both showed decreased levels at 4 hours, suggesting a decrease in activation for these flow conditions.Exposure of HUVEC to different types of shear stress results in varying patterns of activation of ERK5. Activation of ERK5 with TFF suggests a role in the pathogenesis of atherosclerosis and vascular remodeling under disturbed flow conditions.

Publisher

Georg Thieme Verlag KG

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3