2,5-Diaryl 6-hydroxyphenalenones for Single-Molecule Junctions

Author:

Vogel David1ORCID,Ornago Luca2ORCID,Wegeberg Christina1ORCID,Prescimone Alessandro1ORCID,van Herreder Zant2ORCID,Mayor Marcel134ORCID

Affiliation:

1. Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland

2. Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

3. Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany

4. Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510274, P. R. of China

Abstract

A modular access to 2,5-diaryl 6-hydroxyphenalenone derivatives is developed and demonstrated by a small series of 5 molecules. Within this series, the structures 1 and 2 expose terminal methylsulfanyl anchor groups, enabling their integration in a single-molecule junction. The modular synthesis is based on Suzuki cross-coupling of the aryl substituents as boronic acid precursors with 5,8-dibromo-2-(tert-butyl)-4,9-dimethoxy-2,3-dihydro-1H-phenalen-1-one, and the subsequent transformation of the product to the desired 2,5-diaryl 6-hydroxyphenalenone in a reduction/deprotection sequence. The new structures are fully characterized and their optical and electrochemical properties are analysed. For the derivatives 1 and 2 suitable for single-molecule junctions, the corresponding oxophenalenoxyl radicals 1R and 2R were obtained by oxidation and analysed by electron paramagnetic resonance spectroscopy. Preliminary mechanical break junction experiments with 1 display the structureʼs ability to form transient single-molecule junctions. The intention behind the molecular design is to profit from the various redox states of the structure (including the neutral radical) as a molecular switch in an electrochemically triggered single-molecule transport experiment.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Higher Education Discipline Innovation Project

Independent Research Fund Denmark

Publisher

Georg Thieme Verlag KG

Subject

Materials Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3