In Vitro Investigation on the Effect of Dendrobine on the Activity of Cytochrome P450 Enzymes

Author:

Wang Zhiheng1,Zhou Kuilong2,Liang Zhijie1,Zhang Huiting1,Song Yangjie1,Yang Xiaomin1,Xiang Dongguo1,Xie Qingfan3

Affiliation:

1. Department of Acupuncture, Xingtai Peopleʼs Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China

2. Internal Medicine of TCM, Xingtai Peopleʼs Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China

3. Department of Rehabilitation Medicine, Xingtai Peopleʼs Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China

Abstract

AbstractDendrobine is the major active ingredient of Dendrobium nobile, Dendrobium chrysotoxum, and Dendrobium fimbriatum, all of which are used in traditional Chinese medicine owing to their antitumor and anti-inflammation activities. Hence, investigation on the interaction of dendrobine with cytochrome P450 enzymes could provide a reference for the clinical application of Dendrobium. The effects of dendrobine on cytochrome P450 enzymes activities were investigated in the presence of 0, 2.5, 5, 10, 25, 50, and 100 µM dendrobine in pooled human liver microsomes. The specific inhibitors were employed as the positive control and the blank groups were set as the negative control. The Lineweaver-Burk plots were plotted to characterize the specific inhibition model and obtain the kinetic parameters. The study reveals that dendrobine significantly inhibited the activity of CYP3A4, 2C19, and 2D6 with IC50 values of 12.72, 10.84, and 15.47 µM, respectively. Moreover, the inhibition of CYP3A4 was found to be noncompetitive (Ki = 6.41 µM) and time dependent (KI = 2.541 µM−1, Kinact  = 0.0452 min−1), while the inhibition of CYP2C19 and 2D6 was found to be competitive with the Ki values of 5.22 and 7.78 µM, respectively, and showed no time-dependent trends. The in vitro inhibitory effect of dendrobine implies the potential drug-drug interaction between dendrobine and CYP3A4-, 2C9-, and 2D6-metabolized drugs. Nonetheless, these findings need further in vivo validation.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3