Polyp detection with computer-aided diagnosis in white light colonoscopy: comparison of three different methods

Author:

Figueiredo Pedro1,Figueiredo Isabel2,Pinto Luís2,Kumar Sunil3,Tsai Yen-Hsi4,Mamonov Alexander5

Affiliation:

1. Department of Gastroenterology, Centro Hospitalar e Universitário de Coimbra and Faculty of Medicine, University of Coimbra, Coimbra, Portugal and Centro Cirúrgico de Coimbra, Coimbra, Portugal

2. CMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal.

3. Department of Mathematical Sciences, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India

4. Department of Mathematics and the Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States

5. Department of Mathematics, University of Houston, Houston, Texas, United States

Abstract

Abstract Background and study aims Detection of polyps during colonoscopy is essential for screening colorectal cancer and computer-aided-diagnosis (CAD) could be helpful for this objective. The goal of this study was to assess the efficacy of CAD in detection of polyps in video colonoscopy by using three methods we have proposed and applied for diagnosis of polyps in wireless capsule colonoscopy. Patients and methods Forty-two patients were included in the study, each one bearing one polyp. A dataset was generated with a total of 1680 polyp instances and 1360 frames of normal mucosa. We used three methods, that are all binary classifiers, labelling a frame as either containing a polyp or not. Two of the methods (Methods 1 and 2) are threshold-based and address the problem of polyp detection (i. e. separation between normal mucosa frames and polyp frames) and the problem of polyp localization (i. e. the ability to locate the polyp in a frame). The third method (Method 3) belongs to the class of machine learning methods and only addresses the polyp detection problem. The mathematical techniques underlying these three methods rely on appropriate fusion of information about the shape, color and texture content of the objects presented in the medical images. Results Regarding polyp localization, the best method is Method 1 with a sensitivity of 71.8 %. Comparing the performance of the three methods in the detection of polyps, independently of the precision in the location of the lesions, Method 3 stands out, achieving a sensitivity of 99.7 %, an accuracy of 91.1 %, and a specificity of 84.9 %. Conclusion CAD, using the three studied methods, showed good accuracy in the detection of polyps with white light colonoscopy.

Publisher

Georg Thieme Verlag KG

Subject

Gastroenterology,Medicine (miscellaneous)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3