Extracting Pain Care Quality Indicators from U.S. Veterans Health Administration Chiropractic Care Using Natural Language Processing

Author:

C. Coleman Brian12,Finch Dezon3,Wang Rixin12,L. Luther Stephen34,Heapy Alicia15,Brandt Cynthia12,J. Lisi Anthony12

Affiliation:

1. Pain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare System, West Haven, Connecticut, United States

2. Yale Center for Medical Informatics, Yale School of Medicine, Yale University, New Haven, Connecticut, United States

3. Research Service, James A. Haley Veterans Hospital, Tampa, Florida, United States

4. College of Public Health, University of South Florida, Tampa, Florida, United States

5. Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut, United States

Abstract

Abstract Background Musculoskeletal pain is common in the Veterans Health Administration (VHA), and there is growing national use of chiropractic services within the VHA. Rapid expansion requires scalable and autonomous solutions, such as natural language processing (NLP), to monitor care quality. Previous work has defined indicators of pain care quality that represent essential elements of guideline-concordant, comprehensive pain assessment, treatment planning, and reassessment. Objective Our purpose was to identify pain care quality indicators and assess patterns across different clinic visit types using NLP on VHA chiropractic clinic documentation. Methods Notes from ambulatory or in-hospital chiropractic care visits from October 1, 2018 to September 30, 2019 for patients in the Women Veterans Cohort Study were included in the corpus, with visits identified as consultation visits and/or evaluation and management (E&M) visits. Descriptive statistics of pain care quality indicator classes were calculated and compared across visit types. Results There were 11,752 patients who received any chiropractic care during FY2019, with 63,812 notes included in the corpus. Consultation notes had more than twice the total number of annotations per note (87.9) as follow-up visit notes (34.7). The mean number of total classes documented per note across the entire corpus was 9.4 (standard deviation [SD]  =  1.5). More total indicator classes were documented during consultation visits with (mean  =  14.8, SD  =  0.9) or without E&M (mean  =  13.9, SD  =  1.2) compared to follow-up visits with (mean  =  9.1, SD  =  1.4) or without E&M (mean  =  8.6, SD  =  1.5). Co-occurrence of pain care quality indicators describing pain assessment was high. Conclusion VHA chiropractors frequently document pain care quality indicators, identifiable using NLP, with variability across different visit types.

Funder

Health Services Research and Development

NCMIC Foundation

National Center for Complementary and Integrative Health

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3