Additive Titanium Manufacturing to Repair Critically Sized Antebrachial Bone Defects in Two Dogs

Author:

Janssens S.D.S.1,Willemsen K.23,Magré J.23,Meij B.P.1

Affiliation:

1. Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands

2. Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands

3. 3D Lab, Division of Surgical Specialties, University Medical Center Utrecht, the Netherlands

Abstract

AbstractRecent developments in the medical field of additive manufacturing (AM) have allowed the creation of patient-specific porous titanium implants for use in the medical field. With correct pore size such scaffolds are able to be integrated into surrounding bone.Two dogs were presented with atrophic non-union of the proximal ulna involving the elbow joint due to previous orthopaedic procedures with severe complications that led to segmental bone defects that were not expected to heal without a secondary intervention. Computed tomography (CT) was performed and porous scaffolds and saw guides were designed in silico and printed by AM. Osteotomies in adjacent healthy bone were guided by patient-specific three-dimensional (3D)-printed nylon saw guides allowing a perfect fit for the 3D-printed implant. In one case the scaffold was filled with bone morphogenic protein and held in place by two plates. In the other case the scaffold was filled with cancellous bone graft and held in place by a titanium plate that was part of the scaffold design. Both cases regained function and weight-bearing without lameness. Osseointegration of the implant was shown in both cases on follow-up CT and radiographs and macroscopically evident in the pores of the 3D implant after plate removal. One dog was euthanatized for unrelated disease and micro-CT revealed solid bone bridging through the inner scaffold tunnel.This study showed the successful application of the design, fabrication and clinical use of a patient-specific 3D-printed titanium implant to repair segmental bone defects of the antebrachium in two dogs.

Publisher

Georg Thieme Verlag KG

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3