Detecting Oxygenator Thrombosis in ECMO: A Review of Current Techniques and an Exploration of Future Directions

Author:

Leerson Jack12,Tulloh Andrew2,Lopez Francisco Tovar1,Gregory Shaun3,Buscher Hergen4,Rosengarten Gary1

Affiliation:

1. Department is Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia

2. Department of Manufacturing, CSIRO, Research Way, Clayton, Victoria, Australia

3. Department of Mechanical and Aerospace Engineering, Cardiorespiratory Engineering and Technology Laboratory, Monash University, Melbourne, Victoria, Australia

4. Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, Australia

Abstract

AbstractExtracorporeal membrane oxygenation (ECMO) is a life-support technique used to treat cardiac and pulmonary failure, including severe cases of COVID-19 (coronavirus disease 2019) involving acute respiratory distress syndrome. Blood clot formation in the circuit is one of the most common complications in ECMO, having potentially harmful and even fatal consequences. It is therefore essential to regularly monitor for clots within the circuit and take appropriate measures to prevent or treat them. A review of the various methods used by hospital units for detecting blood clots is presented. The benefits and limitations of each method are discussed, specifically concerning detecting blood clots in the oxygenator, as it is concluded that this is the most critical and challenging ECMO component to assess. We investigate the feasibility of solutions proposed in the surrounding literature and explore two areas that hold promise for future research: the analysis of small-scale pressure fluctuations in the circuit, and real-time imaging of the oxygenator. It is concluded that the current methods of detecting blood clots cannot reliably predict clot volume, and their inability to predict clot location puts patients at risk of thromboembolism. It is posited that a more in-depth analysis of pressure readings using machine learning could better provide this information, and that purpose-built imaging could allow for accurate, real-time clotting analysis in ECMO components.

Publisher

Georg Thieme Verlag KG

Subject

Cardiology and Cardiovascular Medicine,Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3