A Technical Feasibility of Aqueous Aerosol Generation Based on the Flashing Jet: Impact of Surfactant, Electrolyte, and Drug Concentration

Author:

Zheng Qi-Wen1,Wang Jian1

Affiliation:

1. National Advance Medical Engineering Research Center, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai, People's Republic of China

Abstract

AbstractThis study aimed to investigate the atomization mechanism of a flashing jet (FJ), focusing on the potential factors that influence the atomization performance of the device. Those factors include surfactant, electrolyte, and drug concentration. In this work, Tween 80, sodium chloride (NaCl), and salbutamol sulfate (SBS) were used for the study. The aerosol's mass median aerodynamic diameter (MMAD) was investigated for analysis. The drug delivery ability of the FJ prototype was compared with the Pari nebulizer. Our data suggested that the MMAD of aerosol decreased as the concentration of Tween 80 increased, but the critical micelle concentration point was not influenced. Upon adding NaCl to pure water, with the increase of NaCl concentration, the MMAD of aerosol initially decreased significantly and then increased, reaching the lowest point when 0.05% NaCl was used. A higher concentration of SBS was beneficial for the atomization performance. When the SBS concentration was 5 mg/mL, the MMAD values of the FJ prototype and Pari nebulizer were 2.28 ± 0.15 and 1.03 ± 0.21 μm, respectively, and the fine particle dose (%TDD) of the FJ prototype and Pari nebulizer was 50.99 ± 5.88 and 53.51 ± 4.58%, respectively. Interestingly, the concentration of SBS has no effect on the residual dosage level of the FJ prototype, indicating that it can be applied in atomizing high-concentration solutions. In summary, surfactant, electrolyte, and drug concentration played an important role in the atomization performance of the FJ prototype and these ingredients are also crucial factors that should be considered in future formulation studies.

Publisher

Georg Thieme Verlag KG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3