Evaluation of Cannabinoid and Terpenoid Content: Cannabis Flower Compared to Supercritical CO2 Concentrate

Author:

Sexton Michelle12,Shelton Kyle23,Haley Pam4,West Mike5

Affiliation:

1. Center for the Study of Cannabis and Social Policy, Seattle, WA, USA

2. Phytalytics LLC, Kirkland, WA, USA

3. Medicine Creek Analytics, Fife, WA, USA

4. CO₂ Garden Extracts, Redmond, WA, USA

5. Green Lion Farms, Seattle, WA, USA

Abstract

AbstractA recent cannabis use survey revealed that 60% of cannabis users rely on smelling the flower to select their cannabis. Olfactory indicators in plants include volatile compounds, principally represented by the terpenoid fraction. Currently, medicinal- and adult-use cannabis is marketed in the United States with relatively little differentiation between products other than by a common name, association with a species type, and Δ-9 tetrahydrocannabinol/cannabidiol potency. Because of this practice, how terpenoid compositions may change during an extraction process is widely overlooked. Here we report on a comparative study of terpenoid and cannabinoid potencies of flower and supercritical fluid CO2 (SC-CO2) extract from six cannabis chemovars grown in Washington State. To enable this comparison, we employed a validated high-performance liquid chromatography/diode array detector methodology for quantification of seven cannabinoids and developed an internal gas chromatography-mass spectrometry method for quantification of 42 terpenes. The relative potencies of terpenoids and cannabinoids in flower versus concentrate were significantly different. Cannabinoid potency increased by factors of 3.2 for Δ-9 tetrahydrocannabinol and 4.0 for cannabidiol in concentrates compared to flower. Monoterpenes were lost in the extraction process; a ketone increased by 2.2; an ether by 2.7; monoterpene alcohols by 5.3, 7 and 9.4; and sesquiterpenes by 5.1, 4.2, 7.7, and 8.9. Our results demonstrate that the product of SC-CO2 extraction may have a significantly different chemotypic fingerprint from that of cannabis flower. These results highlight the need for more complete characterization of cannabis and associated products, beyond cannabinoid content, in order to further understand health-related consequences of inhaling or ingesting concentrated forms.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3