Affiliation:
1. Health, Human Performance, and Recreation, Baylor University, Waco, United States
2. Northern VA Community College, 21200 Campus Dr., Sterling, United States
3. Health and Kinesiology, Lamar University, Beaumont, United States
Abstract
AbstractElevated oxidized low-density lipoprotein (ox-LDL) and cell adhesion molecules are associated with inflammation and atherosclerosis. The role of exercise in circulating ox-LDL, enzyme mediators, and cell adhesion molecules are not clearly understood in obesity. As a randomized controlled design, 27 obese (BMI>30 kg/m2) sedentary men (N=13) and women (N=14) were randomly assigned to either an exercise (N=15) or a control (N=12) group. The exercise group performed a 60-min supervised treadmill exercise at moderate intensity (70% of HRmax) for 3 days per week for 4 weeks, while the control group did not exercise. Overnight fasting blood samples were collected before and after the study period to analyze serum lipids, lipoprotein-cholesterol, ox-LDL, 12- and 15-lipoxygenases, myeloperoxidase (MPO), and soluble vascular cell adhesion molecules-1 and intercellular adhesion molecule-1. Moderate-intensity exercise training lowered both ox-LDL (from 44.76±1.99 to 38.51±1.99 U/L, p=0.032) and MPO (from 31.48±2.20 to 23.09±2.20 ng/mL, p=0.010), without significantly altering body weight, other parameters of serum lipids and lipoproteins, or soluble cell adhesion molecules. Moderate intensity exercise training reduced the levels of ox-LDL and MPO, indicating a reduced risk for developing CVD and additional protection to the possible metabolic complications associated with obesity.
Subject
Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献