Virtual Reality Planning of Microvascular Decompression in Trigeminal Neuralgia: Technique and Clinical Outcome

Author:

Fabrig Oliver Dietmar1,Serra Carlo2,Kockro Ralf Alfons1

Affiliation:

1. Department of Neurosurgery, Center for MicroNeurosurgery, Hirslanden Hospital, Zurich, Switzerland

2. Department of Neurosurgery, University Hospital of Zurich, Switzerland

Abstract

Abstract Background A neurovascular conflict (NVC) is considered the cause of trigeminal neuralgia (TN) in 75% of cases, and if so, a microvascular decompression (MVD) can lead to significant pain relief. A reliable preoperative detection of NVC is essential for clinical decision-making and surgical planning, making detailed neuroradiologic imaging an important component. We present our experiences and clinical outcomes with preoperative planning of the MVD procedure in a virtual reality (VR) environment, based on magnetic resonance imaging (MRI) including magnetic resonance angiography (MRA) and magnetic resonance venography (MRV) sequences. Methods We analyzed the data of 30 consecutive MVDs in patients treated for TN, in a retrospective single-surgeon (R.A. Kockro) study. Out of the 30 cases, 26 were included. Preoperatively, MRA/MRV and MRI series were fused and three dimensionally reconstructed in a VR environment. All critical structures such as the trigeminal nerve as well as the arteries and veins of the cerebellopontine angle, the brainstem, the neighboring cranial nerves, and the transverse and sigmoid sinus were segmented. The NVC was visualized and a simulation of a retrosigmoid approach, with varying trajectories, to the NVC was performed. The intraoperative findings were then compared with the data of the simulation. The clinical outcome was assessed by a detailed review of medical reports, and follow-up-interviews were conducted in all available patients (20/26). Results The VR planning was well integrated into the clinical workflow, and imaging processing time was 30 to 40 minutes. There was a sole arterial conflict in 13 patients, a venous conflict in 4 patients, and a combined arteriovenous conflict in 9 patients. The preoperative simulations provided a precise visualization of the anatomical relationships of the offending vessels and the trigeminal nerves as well as the surrounding structures. For each case, the approach along the most suitable surgical corridor was simulated and the exact steps of the decompression were planned. The NVC and the anatomy of the cerebellopontine angle as seen intraoperatively matched with the preoperative simulations in all cases and the MVC could be performed as planned. At follow-up, 92.3% (24/26) of patients were pain free and all the patients who completed the questionnaire would undergo the surgery again (20/20). The surgical complication rate was zero. Conclusion Current imaging technology allows detailed preoperative visualization of the pathoanatomical spatial relationships in cases of TN. 3D interactive VR technology allows establishing a clear dissection and decompression strategy, resulting in safe vascular microsurgery and excellent clinical results.

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3