Anti-inflammatory Effects of Canthin-6-one Alkaloids from Ailanthus altissima

Author:

Cho Seung-Kye1,Jeong Miran1,Jang Dae12,Choi Jung-Hye13

Affiliation:

1. Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea

2. Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea

3. Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea

Abstract

AbstractCanthin-6-one (CO) alkaloids possess various biological activities, including antibacterial, antitumor, antifungal, and antiviral activities. However, their anti-inflammatory effects and underlying molecular mechanisms are poorly characterized. This study aimed to investigate the anti-inflammatory effects of CO and its derivative 5-(1-hydroxyethyl)-canthin-6-one (5-HCO), isolated from the stem barks of Ailanthus altissima in lipopolysaccharide (LPS)-stimulated macrophages. CO (1 and 5 µM) and 5-HCO (7.5 and 15 µM) significantly inhibited the LPS-induced expression of inducible nitric oxide synthase. In addition, CO (1 and 5 µM) and 5-HCO (15 µM) markedly suppressed the production of prostaglandin E2 (PGE2) and expression of cyclooxygenase-2, a key enzyme in PGE2 synthesis, in LPS-stimulated macrophages. Moreover, CO treatment significantly reduced monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) expression, whereas 5-HCO inhibited MCP-1, but not TNF-α expression. Both CO and 5-HCO inhibited the phosphorylation of inhibitor kappa B and transcriptional activation of nuclear factor kappa B (NF-κB) in LPS-stimulated macrophages. In addition, CO, but not 5-HCO, markedly reduced Akt phosphorylation. Taken together, these data suggest that CO, but not 5-HCO with a hydroxyethyl moiety on the D ring, has potent anti-inflammatory activity in LPS-stimulated macrophages through the downregulation of both the NF-κB and the Akt pathway.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3