Preparation, in vitro Characterization and Pharmacokinetic Study of Coenzyme Q10 Long-Circulating Liposomes

Author:

Yang Shuoye1

Affiliation:

1. College of Bioengineering, Henan University of Technology, Zhengzhou, P. R. China

Abstract

AbstractLong-circulating liposomal delivery systems of encapsulated Coenzyme Q10 (CoQ10), a ubiquinone anti-cataract agent, were developed with different molar ratios of PEGylated lipids and/or cholesterol. The resulting samples were contrasted through observation of morphology, analysis of particle size and Zeta potential, and in vivo pharmacokinetics. A protamine aggregation method with high selectivity was developed to determine the encapsulation efficiency (EE), after which the liposome formulation was further optimized by applying a Box Behnken design (BBD) using EE as the evaluation index. The results showed that liposomes had a large, unilamellar structure, and that particle sizes of cholesterol-containing liposomes increased along with the increase of cholesterol molar percentage, while the size of PEGylated vesicles decreased slightly as PEG-lipid contents increasing. The optimum formulation and optimal values of each influencing factor were quantitatively obtained, and the measured value was highly consistent with the predicted results. In vivo evaluation performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) demonstrated that liposomal encapsulation largely prolonged half-lives and improved bioavailability for vectors prepared with either lipid component, and the liposomes composed of both cholesterol and PEG-lipid possessed the best pharmacokinetic properties. The results suggest that incorporating high contents of cholesterol and PEG modification could be a potentially useful method for enhancing the length of circulation and the sustained release effect for liposome-encapsulated chemicals.

Publisher

Georg Thieme Verlag KG

Subject

Drug Discovery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3