Resistance Training Threshold for Elevating Bone Mineral Density in Growing Female Rats

Author:

Dror Azriel1,Virk Katie1,Lee Kassandra1,Gerston Aaron1,Prakash Anuradha2,Abbott Marcia1,Jaque S.3,Sumida Ken1

Affiliation:

1. Department of Health Sciences, Chapman University, Orange, United States

2. Schmid College of Sci, Chapman University, Orange, United States

3. Northridge, Dept of Kinesiology, California State University, Northridge, United States

Abstract

AbstractThe purpose of this study was to determine the minimum amount of resistance exercise that would stimulate bone formation yielding an elevation in bone mineral density (BMD) during the growth period in female rats. Female rats were randomly divided into: Control (Con, n=8), 3 ladder climb resistance-trained group (3LC, n=8), 4 ladder climb resistance-trained group (4LC, n=8), 5 ladder climb resistance-trained group (5LC, n=8), and 6 ladder climb resistance-trained group (6LC, n=8). All exercised groups were conditioned to climb a vertical ladder with weights appended to their tail 3 days/wk for a total of 6 wks. After 6 wks, left tibia BMD (g/cm2) was significantly greater for 4LC (0.197±0.003), 5LC (0.200±0.004) and 6LC (0.202±0.003) when compared to Con (0.185±0.006). Left femur BMD (g/cm2) was significantly greater for 4LC (0.260±0.005), 5LC (0.269±0.004) and 6LC (0.272±0.006) when compared to Con (0.244±0.006). There were no significant differences in tibia and femur BMD between 4LC, 5LC, and 6LC groups. The results suggest that during growth, a high volume of resistance exercise was required to elicit an elevation in BMD in females.

Publisher

Georg Thieme Verlag KG

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3