Hostile Hemodynamics in Distal Stent Graft–Induced New Entry Prior to Aortic Rupture: A Comparison of Transient versus Steady-State CFD Simulations

Author:

Osswald Anja1ORCID,Tsagakis Konstantinos1,Demircioglu Ender1,Weymann Alexander1,Zubarevich Alina1,Ruhparwar Arjang1,Karmonik Christof2

Affiliation:

1. Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University Duisburg-Essen, Essen, Germany

2. MRI Core, Translational Imaging Center, Houston Methodist Research Institute, Houston, Texas, United States

Abstract

Abstract Background Computational fluid dynamics (CFD) simulations model blood flow in aortic pathologies. The aim of our study was to understand the local hemodynamic environment at the site of rupture in distal stent graft–induced new entry (dSINE) after frozen elephant trunk with a clinically time efficient steady-flow simulation versus transient simulations. Methods Steady-state simulations were performed for dSINE, prior and after its development and prior to aortic rupture. To account for potential turbulences due geometric changes at the dSINE location, Reynolds-averaged Navier–Stokes equations with the realizable k-ε model for turbulences were applied. Transient simulations were performed for comparison. Hemodynamic parameters were assessed at various locations of the aorta. Results Post-dSINE, jet-like flow due to luminal narrowing was observed which increased prior to rupture and resulted in focal neighbored regions of high and low wall shear stress (WSS). Prior to rupture, aortic diameter at the rupture site increased lowering WSS at the entire aortic circumference. Concurrently, WSS and turbulence increased locally above the entry tear at the inner aortic curvature. Turbulent kinetic energy and WSS elevation in the downstream aorta demonstrated enhanced stress on the native aorta. Results of steady-state simulations were in good qualitative agreement with transient simulations. Conclusion Steady-flow CFD simulations feasible at clinical time scales prior to aortic rupture reveal a hostile hemodynamic environment at the dSINE rupture site in agreement with lengthy transient simulations. Consequently, our developed approach may be of value in treatment planning where a fast assessment of the local hemodynamic environment is essential.

Publisher

Georg Thieme Verlag KG

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3