Comparison of In Vitro Hepatic Scoparone 7-O-Demethylation between Humans and Experimental Animals

Author:

Fayyaz Anam1,Makwinja Seddy1,Auriola Seppo1,Raunio Hannu1,Juvonen Risto1

Affiliation:

1. School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland

Abstract

AbstractScoparone is a natural bioactive compound in Chinese herbal medicines. It has numerous pharmacological actions, including liver protective, hypolipidemic, antitumor, and anti-inflammatory effects. The primary metabolism route of scoparone is O-demethylation to scopoletin or isoscopoletin catalyzed by CYP enzymes. The aims of our study were to identify the human CYP enzymes catalyzing scoparone 7-O-demethylation to scopoletin and to compare this oxidation reaction in liver microsomes among different species. A high throughput fluorescent-based assay method was developed to determine the scoparone 7-O-demethylation to scopoletin rate. The rate was 100 – 400 nmol/(min×g protein) in mouse and rabbit liver microsomes, 10 – 20 nmol/(min×g protein) in pig microsomes, 1 – 3 nmol/(min×g protein) in human and less than 1 nmol/(min×g protein) in rat liver microsomes. Human CYP1A1 (Km 13 µM and Vmax 0.8 min−1), CYP1A2 (Km 48 µM and Vmax 0.3 min−1), and CYP2A13 (Km 10 µM and Vmax 22 min−1) were the most efficient catalysts of the reaction. The CYP2A6 selective inhibitor pilocarpine and an antibody against mouse CYP2A5 inhibited scoparone 7-O-demethylation to scopoletin in rabbit, mouse, and pig liver microsomes, indicating involvement of CYP2A enzymes in the reaction. Hepatic scoparone 7-O-demethylation to scopoletin differed between species both with respect to the rate of reaction and catalyzing enzymes. These species differences need to be taken into account when testing scoparone pharmacokinetics in animals and humans.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3