The Evaluation of Prognostic Value and Immune Characteristics of Ferroptosis-Related Genes in Lung Squamous Cell Carcinoma

Author:

Su Jialin12,Tan Shuhua2,Gong Houwu3,Luo Yongzhong1,Cheng Tianli1,Yang Hua1,Wen Xiaoping1,Jiang Zhou1,Li Yuning2,Zhang Lemeng1

Affiliation:

1. Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China

2. School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, People's Republic of China

3. College of Computer Science and Electronic Engineering, Hunan University, Changsha, People's Republic of China

Abstract

Abstract Background The purpose of our study was to construct a prognostic model based on ferroptosis-related gene signature to improve the prognosis prediction of lung squamous carcinoma (LUSC). Methods The mRNA expression profiles and clinical data of LUSC patients were downloaded. LUSC-related essential differentially expressed genes were integrated for further analysis. Prognostic gene signatures were identified through random forest regression and univariate Cox regression analyses for constructing a prognostic model. Finally, in a preliminary experiment, we used the reverse transcription-quantitative polymerase chain reaction assay to verify the relationship between the expression of three prognostic gene features and ferroptosis. Results Fifty-six ferroptosis-related essential genes were identified by using integrated analysis. Among these, three prognostic gene signatures (HELLS, POLR2H, and POLE2) were identified, which were positively affected by LUSC prognosis but negatively affected by immune cell infiltration. Significant overexpression of immune checkpoint genes occurred in the high-risk group. In preliminary experiments, we confirmed that the occurrence of ferroptosis can reduce three prognostic gene signature expression. Conclusions The three ferroptosis-related genes could predict the LUSC prognostic risk of antitumor immunity.

Publisher

Georg Thieme Verlag KG

Subject

Literature and Literary Theory,History,Cultural Studies

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3