High Fluorescent Cells on Automated Body Fluid Analysis as Discriminator for Malignant Cell Detection

Author:

Saini Ankita1,Sareen Rateesh1,Gupta G. N.1

Affiliation:

1. Department of Pathology, Santokba Durlabhji Memorial Hospital Cum Research Institute, Jaipur, Rajasthan, India

Abstract

The automated examination of body fluids (BF) serves as a valuable screening tool for the presence of malignant cells in such samples. Malignant cells are identified as high fluorescence cells (HFC) when analyzed using the Sysmex XN-1000 automated analyzer. This study aimed to assess the correlation between HFC cell counts generated by the automated analyzer and manual cytological examination for detecting malignant cells. Additionally, it sought to establish reliable cutoff values for malignant cells since there is a lack of literature on this subject. Conducted at the department of pathology hematology and cytology laboratory in a tertiary care hospital in India from January 2019 to May 2020, this hospital-based comparative study analyzed 120 BF samples, each subjected to cytological evaluation. The mean age of the study population was 52 years, with 70 male and 50 female patients (male-to-female ratio of 1.4:1). The samples consisted of 53 ascitic fluids (44.17%), 46 pleural fluids (38.33%), and 21 cerebrospinal fluids (CSF; 17.50%). Cytopathological examination revealed malignant cells in 50 (41.67%) of the BF samples, with 70 (58.33%) samples classified as nonmalignant. Specifically, among the ascitic fluids, 24 (48%) were malignant, while 29 (41.43%) were nonmalignant. For pleural fluids, 24 (48%) were malignant, and 22 (31.43%) were nonmalignant. In CSF, 2 (4%) samples were malignant, and 19 (27.14%) were nonmalignant. The total white blood cell counts provided by automated hematology analyzers were significantly higher in malignant samples, ranging from a minimum of 100 cells to a maximum of 60,000, with a median count of 800. Nonmalignant samples had white blood cell counts ranging from 2 to 12,000, with a median count of 100. Subgroup analysis for ascitic, pleural, and CSF samples revealed significantly higher median HFC counts in malignant samples. Receiver operating characteristic curve analysis indicated that the HF-BF parameter could effectively distinguish between benign and malignant fluids. For HF#, the area under the curve (AUC) was 0.844, with a sensitivity of 82% and specificity of 81%, while HF% had an AUC of 0.706, with sensitivity and specificity values of 72% and 72.9%, respectively. This study highlights that the HFC count in the BF mode of Sysmex XN-1000 can be a valuable tool for predicting the presence of malignant cells in serous fluids and for selecting samples for further microscopic examination. Based on this study, cutoff values of 15.70/µL for absolute HFC count and 5.05% for relative HFC count can be applied to screen BF samples for malignancy, offering good sensitivity and specificity.

Publisher

Georg Thieme Verlag KG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3