Mitophagy Regulation by Kangxian Yixin Granule in a Mouse Model of Dilated Cardiomyopathy

Author:

Liu Shunyu12,Hei Xuanding2,Wu Hong2,Wang Zhentao12

Affiliation:

1. Department of Cardiology, Henan Province Hospital of Chinese Medicine, Zhengzhou, Henan, China

2. Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China

Abstract

Abstract Objective Kangxian Yixin granule (KXYXG) has been found to be effective in the clinical treatment of dilated cardiomyopathy (DCM). We aim to explore the effect of KXYXG and the underlying mechanism in a mouse model of DCM. Methods Thirty specific pathogen-free (SPF) male cTnTR141W mice with DCM were randomly divided into the model group, KXYXG (20.4 g/kg/d) group and coenzyme Q10 (CoQ10) (1.5 mg/kg/d) group; 10 SPF male C57BL/6J mice were included to form the normal group. The mice in KXYXG group and CoQ10 group were administered by oral gavage for 8 weeks. M-echocardiography was used to evaluate the cardiac function in mice, and hematoxylin and eosin staining and transmission electron microscopy were performed to observe morphological characters. The colocalization and expression levels of mitophagy-related proteins were observed using immunofluorescence and western blot. Results Compared with the normal group, the model group showed ventricular remodeling, cardiac insufficiency, disordered arrangement of cardiomyocytes, as well as disordered mitochondria and irregular and diffuse swelling. Furthermore, the model group had lower mitophagy protein colocalization and autophagy flux. Furthermore, PINK1 and Parkin expression levels decreased in the mice with DCM (p < 0.05). KXYXG could decrease the left ventricular end-diastolic and end-systolic diameters and mitochondrial injury, rescue cardiac dysfunction and remodeling, and protect against myocardial ultrastructure changes in the mice with DCM. KXYXG also increased the colocalization levels of mitophagy-related proteins and PINK1 and Parkin expression levels compared with those in the model group (p < 0.05). Conclusion KXYXG can protect against heart injury by possibly activating the PINK1/Parkin pathway and mitophagy in mice with DCM.

Funder

Science and Technology Project of Henan Province

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3